Ulysse SERRES

Maître de conférences

  • Systèmes Non Linéaires et Procédés

Commande optimale et contrôle géométrique


Bureau 1 LAGEP Université Claude Bernard Lyon 1, bât 308G ESCPE-Lyon, 43 bd du 11 Novembre 1918 G325 Villeurbanne 69622 France

Téléphone bureau 1: 04 72 43 18 80


Site internet: https://sites.google.com/site/ulysseserres

On the cut locus of free, step two Carnot groups

date:2017
références bibliographiques:

Rizzi, Luca, and Ulysse Serres. “On the Cut Locus of Free, Step Two Carnot Groups.” , 2017, 1. doi:10.1090/proc/13658.
Pages:1

Proceedings of the American Mathematical Society

 

Minimal time synthesis for a kinematic drone model

date:2017
références bibliographiques:

Lagache, Marc-Aurèle, Ulysse Serres, and Vincent Andrieu. “Minimal Time Synthesis for a Kinematic Drone Model.” 7, no. 2 (2017): 259–88. doi:10.3934/mcrf.2017009.
Pages:259-288

Mathematical Control and Related Fields

 

Self-triggered continuous–discrete observer with updated sampling period

date:2015
références bibliographiques:

Andrieu, Vincent, Madiha Nadri, Ulysse Serres, and Jean-Claude Vivalda. “Self-Triggered Continuous–discrete Observer with Updated Sampling Period.” 62 (December 2015): 106–13. doi:10.1016/j.automatica.2015.09.018.
Pages:106-113

Automatica

 

Lyapunov and Minimum-Time Path Planning for Drones

date:2015
références bibliographiques:

Maillot, Thibault, Ugo Boscain, Jean-Paul Gauthier, and Ulysse Serres. “Lyapunov and Minimum-Time Path Planning for Drones.” 21, no. 1 (January 2015): 47–80. doi:10.1007/s10883-014-9222-y.
Pages:47-80

Journal of Dynamical and Control Systems

 

Continuous-Discrete Time Observer Design for Lipschitz Systems with Sampled Measurements

date:2014
références bibliographiques:

Andrieu, Vincent, Madiha Nadri, Ulysse Serres, and Thach N. Dinh. “Continuous-Discrete Time Observer Design for Lipschitz Systems with Sampled Measurements.” , 2014.

Accepté dans IEEE Transactions on Automatic Control

 

Lyapunov and Minimum-Time Path Planning for Drones

date:2014
références bibliographiques:

Maillot, Thibault, Ugo Boscain, Jean-Paul Gauthier, and Ulysse Serres. “Lyapunov and Minimum-Time Path Planning for Drones.” , 2014. doi:10.1007/s10883-014-9222-y.

Journal of Dynamical and Control Systems

 

How humans fly

date:2013
références bibliographiques:

Ajami, Alain, Jean-Paul Gauthier, Thibault Maillot, and Ulysse Serres. “How Humans Fly.” 19, no. 04 (2013): 1030–54. doi:10.1051/cocv/2012043.
Pages:1030-1054

ESAIM: Control, Optimisation and Calculus of Variations

 

On the Convergence of Linear Switched Systems

This paper investigates sufficient conditions for the convergence to zero of the trajectories of linear switched systems. We provide a collection of results that use weak dwell-time, dwell-time, strong dwell-time, permanent and persistent activation hypothesis. The obtained results are shown to be tight by counterexample. Finally, we apply our result to the three-cell converter.

date:2011
références bibliographiques:

Serres, U., J. -C Vivalda, and P. Riedinger. “On the Convergence of Linear Switched Systems.” 56, no. 2 (2011): 320–32. doi:10.1109/TAC.2010.2054950.
Pages:320-332

IEEE Transactions on Automatic Control

 

Microlocal normal forms for regular fully nonlinear two-dimensional control systems

In the present paper we deal with fully nonlinear two-dimensional smooth control systems with scalar input \dot q = f(q,u),q \in M,u \in U , where M and U are differentiable smooth manifolds of respective dimensions two and one. For such systems, we provide two microlocal normal forms, i.e., local in the state-input space, using the fundamental necessary condition of optimality for optimal control problems: the Pontryagin maximum principle. One of these normal forms will be constructed around a regular extremal, and the other one will be constructed around an abnormal extremal. These normal forms, which in both cases are parametrized only by one scalar function of three variables, lead to a nice expression for the control curvature of the system. This expression shows that the control curvature, a priori defined for normal extremals, can be smoothly extended to abnormals.

date:2010
références bibliographiques:

Serres, Ulysse. “Microlocal Normal Forms for Regular Fully Nonlinear Two-Dimensional Control Systems.” 270, no. 1 (September 1, 2010): 240–45. doi:10.1134/S0081543810030193.
Pages:240-245

Proceedings of the Steklov Institute of Mathematics

 

On Zermelo-Like Problems: Gauss–Bonnet Inequality and E. Hopf Theorem

The aim of this paper is to describe the Zermelo navigation problem on Riemannian manifolds as a time-optimal control problem and give an efficient method of evaluating its control curvature. We will show that, up to the change of the Riemannian metric on the manifold, the control curvature of the Zermelo problem has a simple to handle expression which naturally leads to a generalization of the classical Gauss–Bonnet formula in the form of an inequality. This Gauss–Bonnet inequality allows one to generalize the Zermelo problems and obtain a theorem of E. Hopf that establishes the flatness of Riemannian tori without conjugate points.

date:2009
références bibliographiques:

Serres, Ulysse. “On Zermelo-Like Problems: Gauss–Bonnet Inequality and E. Hopf Theorem.” 15, no. 1 (January 1, 2009): 99–131. doi:10.1007/s10883-008-9056-6.
Pages:99-131

Journal of Dynamical and Control Systems