10 years CARNOT: MY PARTNER RESEARCH IN 180s

MY PARTNERSHIP RESEARCH in 180s enables researchers from the Carnot Engineering@Lyon Institute to present
their partnership research experience with an SME that has led to an innovative object.
Complete info
INVITATION

1st prize : a value of 50 000 € is the financing of a postdoc for one year
Closing : January 16, 2018
INFORMATION AND CANDIDACY TO SEND TO: communication@engineering-at-lyon.org
04 72 29 15 69

HDR of Vincent ANDRIEU: Some observer and feedback designs for finite dimensional nonlinear systems

On January 16th at 1:30 pm, Vincent ANDRIEU will support his habilitation to direct the research.

If you wish to attend, the defense will take place at 13:30 in the conference room of the Doua Library.

Title : Some observer and feedback designs for finite dimensional nonlinear systems

Jury :
Alessandro Astolfi (Rapporteur)
Gildas Besançon (Rapporteur)
Henk Nijmeijer (Rapporteur)
Laurent Praly (Examinateur)
Hassan Hammouri (Examinateur)

Thesis: Research hydroconversion process of oil residue slurry stage

Pedro soutiendra sa thèse le vendredi 15 décembre 2017 à 14h00
Salle et lieu : Amphi C223, CPE

Le titre en français et en anglais :
- Etude du procédé d’hydroconversion des résidus pétroliers en phase slurry en mode recyclage
- Study of the slurry-phase hydroconversion of petroleum residues in recycling mode

Le résumé de sa thèse en français est ICI.

La soutenance est confidentielle. Les personnes qui assistent doivent signer un accord de confidentialité. Name: Pedro ALVAREZ
Graduate School:
Directors: Melaz Tayakout
Beginning of the thesis: 05/01/2015
Expected end of the thesis: 04/01/2018
Funding: TOTAL CIFRE Raffinage-Chimie

Seminar by Arbi Moses-Badlyan on “Open State Space Formulation of Reactive Mixtures”

ANNULE

The seminar presented by Arbi Moses-Badlyan (Technical University of Berlin) will take place on Thursday 7 December at 14:00 in room J. Bordet on the following subject:

Title: Open State Space Formulation of Reactive Mixtures

Complex physical systems have been successfully modelled as metriplectic systems, which are state space formulations that have become famous under the acronym GENERIC (General Equation for the Non-Equilibrium Reversible Irreversible Coupling). GENERIC is typically formulated for isolated systems and consist of two main parts, a Hamiltonian part represented by a Poisson bracket and an entropic part represented by a so called dissipation bracket.

In this talk I present results of a joint work were we have been able to set up an operator based open state space formulation that encodes the weak-formulation of the partial-differential field equations describing the dynamics of a reactive mixture of viscous heat-conducting Newtonian fluids. Our operator based open state space formulation via duality pairing induces a bracket formulation that has the properties of a metriplectic system such that the first and in particular the second law of thermodynamics are satisfied.

Arbi Moses Badlyan – PhD Student
University
: TU-Berlin
Supervisors: Prof. Christopher Beattie (Virginia-Tech) and Prof. Volker Mehrmann (TU-Berlin)

In joint work with:
Christoph Zimmer – PhD Student
University: TU-Berlin
Supervisors: Prof. Christopher Beattie (Virginia-Tech) and Prof. Volker Mehrmann (TU-Berlin)

Seminary of Pauline Bernard

Jeudi 9.11.2017 à 14h00 en salle Bordet au LAGEP, Pauline Bernard donne une présentation sur son travail de thèse qu’elle soutiendra a Paris le 20 Novembre (il s’agit en fait d’une répétition).
Cette présentation concerne la synthèse d’observateurs non linéaires.
Vous trouverez des informations sur Pauline ici:

http://cas.ensmp.fr/~bernard/

Résumé : Contrairement aux systèmes linéaires, il n’existe pas de méthode systématique pour la synthèse d’observateurs pour systèmes non linéaires. Cependant, la synthèse peut être plus ou moins simple suivant les coordonnées choisies pour exprimer la dynamique. Des structures particulières, appelées formes canoniques, ont notamment été identifiées comme permettant la construction facile et directe d’un observateur. Une façon usuelle de résoudre le problème consiste donc à chercher un changement de coordonnées réversible permettant l’expression de la dynamique dans l’une de ces formes canoniques, puis à synthétiser l’observateur dans ces coordonnées, et enfin à en déduire une estimation de l’état du système dans les coordonnées initiales par inversion de la transformation. Cette thèse contribue à chacune de ces trois étapes. Premièrement, nous montrons l’intérêt d’une nouvelle forme triangulaire avec des non linéarités continues (non Lipschitz). En effet, les systèmes observables pour toutes entrées, mais dont l’ordre d’observabilité différentielle est supérieur à la dimension du système, peuvent ne pas être transformables dans la forme triangulaire Lipschitz standard, mais plutôt dans une forme triangulaire “seulement continue”. Le célèbre observateur grand gain n’est alors plus suffisant, et nous proposons d’utiliser plutôt des observateurs homogènes. Une autre forme canonique intéressante est la forme linéaire Hurwitz, qui admet un observateur trivial. La question de la transformation d’un système non linéaire dans une telle forme n’a été étudiée que pour les systèmes autonomes à travers les observateurs de Kazantzis-Kravaris ou de Luenberger. Nous montrons ici comment cette synthèse, consistant à résoudre une EDP, peut être étendue aux systèmes instationnaires/commandés. Quant à l’inversion de la transformation, cette étape est loin d’être triviale en pratique, surtout lorsque les espaces de départ et d’arrivée ont des dimensions différentes. En l’absence d’expression explicite et globale de l’inverse, l’inversion numérique repose souvent sur la résolution d’un problème de minimisation couteux en calcul. C’est pourquoi nous développons une méthode permettant d’éviter l’inversion explicite de la transformation en ramenant la dynamique de l’observateur (exprimée dans les coordonnées de la forme canonique) dans les coordonnées initiales du système. Ceci nécessite une extension dynamique, i.e. l’ajout de nouvelles coordonnées et l’augmentation d’une immersion injective en un difféomorphisme surjectif. Enfin, dans une partie totalement indépendante, nous proposons des résultats concernant l’estimation de la position du rotor d’un moteur synchrone à aimant permanent en l’absence d’informations mécaniques (« sans capteur ») et lorsque des paramètres tels que la résistance ou le flux de l’aimant sont inconnus. Ceci est illustré par des simulations sur données réelles.

Seminar: Eduardo Schultz, doctorant à l’université RWTH/Aachen

Eduardo Schultz, a PhD student at RWTH/Aachen under the supervision of Pr Alexander Mitsos, is visiting the LAGEP this month, and will give a seminar on Friday 27 October 14h, room Jacques Bordet.

Title: Dynamic optimization with inequality path constraints

Dynamic optimization with inequality path constraints is present in several engineering problems, where the models are usually described by a system of ODEs, DAEs or PDEs. These problems are infinite problems with infinite degrees of freedom and infinite constraints, since the optimization is performed over the independent variables domain. Most of the methods available in the literature to solve dynamic optimization problems do not guarantee the satisfaction of constraints over the entire domain. Two algorithms are presented in order to solve dynamic optimization problems which guarantee satisfaction of path constraints. The first algorithm is applied to systems described by PDEs, based on an adaptavie restriction and relaxation of the path constraint, extending the algorithm developed by Fu et al., 20151. The second one is a new algorithm based on Taylor approximation of the path constraint, that can be applied to ODEs and DAEs. Both algorithms are ilustrated by a case study composed by a PFR reactor where the objective is to maximize the concentration of product leaving the reactor, controlling the temperature in the jacket and without violating the maximum temperature inside the reactor.
1Fu J et al., 2015, Local optimization of dynamic programs with guaranteed satisfaction of path constraints, AUTOMATICA, Vol: 62, Pages: 184-192.

Seminar of Professor A. J. van der Schaft, University of Groningen

A seminar will be given by Professor A. J. van der Schaft of the University of Groningen, visiting professor at LAGEP on Thursday 19 October 2017 at 14:00 in room G111.

The title and summary of this seminar are:
Title: Stabilization of optimal supply-demand values for power networks

Abstract: Key constraint in the control of power networks is supply-demand matching, where the total consumed power is equal to the total generated power. Optimization of the so-called social welfare function under the constraint of supply-demand matching leads to an optimal set-point for the operation of the power network. Continuous-time implementation of the primal-dual gradient algorithm converging to this optimal set-point defines a distributed dynamical controller for the physical power network. It will be shown that the optimal set-point is an asymptotically stable equilibrium of the resulting closed-loop system. Main idea in the proof is the port-Hamiltonian modeling of the physical network, as well as of the primal-dual gradient controller, leading to an insightful Lyapunov function.

Yacine Chitour of the L2S gives a seminar in the Bordet room at the LAGEP at 14:00.

Sorry, this entry is only available in Français.

” From Doctorate to Employment “

The Université de Lyon proposes in the section “Doctorat”, the setting up of a new system initiated by the Department of Doctoral Studies at the University of Lyon, with the expertise of OPE (Objective for Employment), ” From Doctorate to Employment “.

It is presented in the form of a six-month program led by experts, for the support of doctors tailored to the search for a permanent job outside the academic sector. This course is based on a collective dynamic led by professional trainers, and associated with a personalized accompaniment adapted to their profile.

The program of the device, with the contacts to be taken, is

http://www.universite-lyon.fr/doctorat/l-universite-de-lyon-lance-un-nouveau-dispositif-du-doctorat-a-l-emploi–353353.kjsp?RH=PHD

and a Presentation Note ED-OPE 07-2017-1

Seminar : Swann Marx (GIPSA Lab-LAGEP)

On Thursday, September 14, at 2:00 pm in room E302 of the CPE building, Swann Marx (GIPSA Lab-LAGEP) will present his thesis work. He will support his thesis on 20 September in Grenoble. His work focuses on the stabilization of EDPs by saturated control.

This is the summary of his presentation.

ABSTRACT :
This thesis provides contributions in stabilization methods for nonlinear dynamical systems. In particular, it focuses on two main subjects: the analysis of infinite-dimensional systems subject to saturated inputs and the design of output feedback laws for either infinite-dimensional or finite-dimensional systems.

The presentation will focus on the first subject.

In the first part, we will introduce a more general class of saturations than the one known for finite-dimensional systems. When bounding a linear stabilizing feedback law with such nonlinearity, a well-posedness result together with an attractivity result will be stated for systems whose open-loop is defined by operators generating strongly continuous semigroup of contractions. The attractivity result will be proved by using the LaSalle’s Invariance Principle together with some compactness properties.

In the second part, a particular nonlinear partial differential equation is studied, namely the Korteweg-de Vries equation, that models long waves in water of relatively shallow depth. A control actuating on a small part of the channel will be considered. This control will be modified with two different types of saturations. The attractivity result will be proved by using Lyapunov argument and a contradiction argument. Finally, the results will be illustrated with some numerical simulations.