ALL

2013

2014

2015

2016

22 documents



ANR “Design of efficient nanoparticles for skin decontamination towards Chemical Warfare Agents”

ANR ASTRID

Partners

  • LAGEP : Porteur M.A. Bolzinger – S. Briançon – I. Pitault.
  • Laboratoire de Chimie ENS –UMR CNRS 5182 : Dr F. Chaput
  • Institut Lumière Matière (ILM) – UMR CNRS 5306 : Dr D. Amans
  • MATEIS UMR CNRS 5510: Pr. Masenelli-Varlot

Abstract
Chemical warfare agents (CWA) such as the nerve agent VX (organophosphorous OPCs) and the vesicant sulfur mustard (organochlorines OCCs), have been used recently in conflicts, but also in terrorist acts targeting civilian. Liquids or droplet aerosol forms of CWA can be absorbed through the skin, but also by many other organs such as the eyes, or the respiratory tract if there is no sufficient protection of the body surface. The first signs of percutaneous intoxication appear quickly in the form of severe functional disturbances at respiratory, cardiovascular, muscular, pupilar, digestive levels for OPCs and blistering of the skin followed by deep ulcerations for OCCs. These disturbances can lead at last to death. Body surface decontamination is therefore crucial to prevent victims poisoning. It reduces the amount of contaminant on the skin surface and thus, decreases the penetration rate and the extent of intoxication. Different decontaminant systems are currently available for skin decontamination. Some systems act by adsorption and displacement of the toxic agent such as Fuller’s Earth (FE) and other systems act by neutralization (chemical degradation) such as the Canadian Reactive Skin Decontaminant Lotion (RSDL). However, these procedures do not eliminate the toxic contaminant, which may disqualify them for use in enclosed spaces and in cases where the waste disposal cannot be ensured. Chemical procedures decompose or convert toxic substances to non-toxic or less toxic products. Generally, the reagents are suitable for a specific group of contaminants (a few are universal). Because of the shortcomings of all current decontamination methods advances in technology are necessary to increase the effectiveness of decontamination methods towards several toxic agents. The aim of the project will be to develop a universal product efficient against several CWAs, easy to handle and lost cost. New types of decontamination agents such as nanocrystalline metal oxides have been recently introduced that exhibit adsorption but also an ability to typically degrade hazardous chemicals and CWAs. The application of cerium oxide, the most abundant rare earth, has been rarely mentioned in literature but it is efficient against CWA simulants even if the mechanisms are not elucidated. Nanoparticles with specific habits and controlled granulometric distribution and non-aggregated will be designed by two main methods: Pulse Laser Ablation in Liquids and Solvothermal Synthesis Process. Both methods allow tuning the habits of particles. The main objective of this part is to correlate the physicochemical properties of particles to their degradation efficiency. Then, new materials will be designed and finally formulated. The in vitro efficiency of particles to degrade OPCs and OCCs simulants will be ranked. Finally the decontamination efficiency of the better formulations will be tested on skin explants according to the AFNOR guideline to lead to a prototype and a proof-of-concept.

Equipe : Pharmaceutical Engineering
Date : 2016




ANR “Innovative membrane Crystallization contactor: Applications to diffusion/Reaction processes”

ANR ICARE

Partners
LAGEP

Abstract
Crystallization/Precipitation is one of the major unit operations of chemicals process industries to produce, purify or separate solid compounds or products. Until now, the process reference, i.e. the stirred tank reactor, stays the current crystallization process. But the need for breakthrough technologies has been highlighted by numerous authors and reports. Amongst the commonly reported technologies, membranes are one of the most promising to ensure an intensified continuous process, easy to scale-up but also to grant a fine control of the hydrodynamic and the mass/heat transfers. However, the use of microporous membranes, mainly reported in the literature, have major issues which are pores blocking by crystals, pores wetting by liquid phase and fouling, i.e. the deposit of solid compound in/on the membrane. Whatever the issue, it causes a decrease of the mass/heat transfer through the membrane inducing a decline of the process performances which are reversible or not.
To avoid pores blocking and pores wetting, the use of dense or composites membranes appear as a promising alternative. The dense membrane or the dense skin of the composite membrane has to be as finer as possible and the polymer material has to highly permeable to limit the membrane mass transfer resistance. Nevertheless, fouling stays the main issue and is currently reported on reverse osmosis membranes. In fact, intramembrane crystallization and surface deposits have been observed, depending on the type of system, but no quantitative interpretation is available. Hence, the choice of the polymer material, to a membrane processes, only considers its lower resistance to mass/heat transfer, which stays one of the most important parameter, or its hydrophobicity.
Thus, the ICARE project intends to investigate the local phenomena in order to understand and explain how, why, where and when the crystallization takes place in/on the polymer material. By the quantitative prediction of crystallization location, the aim of the ICARE project is to develop a rational knowledge of the interactions between crystals properties, operating conditions and membrane materials characteristics in order to rethink the choice of the polymer material in crystallization/precipitation membrane processes.
By choosing better the polymer material, the robustness and the life expectancy of the process membrane will be greatly improved.
But more generally, the understanding of the interactions between fluid conditions, crystals properties and membrane characteristics which constitute a breakthrough approach, could also be employed in different other application domains. Hence, in the Energy area, the choice of the polymer material used (heat exchanger or pressured retarded osmosis) reflected the same phenomenology. The same questioning could also be applied to the Water area, on the membrane used in reverse osmosis or ion exchange where fouling is almost systematically encountered. Regarding the Health fields, the benefit is completely different. Indeed, due to the comprehension of the interactions, new system of drug controlled delivery could be considered such as to inject insulin or drugs against cancer or long pain…
The potentialities will be almost unlimited. The last but not the least area which could benefit from the project is the Materials fields. By understanding how, why, where and when the solid formation takes place, in or on a polymer materials, it is possible to plan to do specific materials with the selected properties.

Equipe : PES
Date : 2016




ANR “Polydopamine-coated open cell polyurethane foams: polyvalent supports for single and multi-site heterogeneous catalyst”

POLYCATPUF

Organization (Partner)
ICS UPR 22 (Partner 1) JIERRY Loïc Assistant-Professor Coordination surface treatment of the OCPUF
LCM UMR 7509 (Partner 2) RITLENG Vincent Assistant-Professor Catalysis
LAGEP UMR 5007 (Partner 3) EDOUARD David Assistant-Professor Chemical engineering
Adisseo CINACHEM (Partner 4) RICAUD Lionel Engineer

Abstract:
Continuous processes based on Structured Catalytic Supports (SCS) are widely used in industry. Indeed this type of support allows an important surface over volume ratio, a small pressure loss, efficient mass transfers, an intimate mixing of the reagents, and an easy separation of the products from the catalyst. Among the variety of SCS, open cell foams are prime candidates, which fulfill all these features. Of ceramic or metallic constitution, these host architectures are ideal supports for metallic particles. The preparation of these foams however requires several steps, and the physisorption of metallic particles a thermic treatment at very high temperature. This expensive and energy consuming way of preparation represents an important drawback in the development of this kind of catalyst, especially when taking into account the current economic and ecological constraints. Moreover these foams present a number of others drawbacks inherent to their structure: (i) they are heavy and thus difficult to handle, (ii) they are not flexible and usually display micro-cracks, which render them breakable, (iii) they present many closed cells, which renders the reproducibility unpredictable, and (iv) the recovery of the expensive catalyst adsorbed on the foam often necessitates numerous chemical treatments in highly corrosive media.
With POLYCATPUF, we propose an alternative based on the use of polyurethane open cell foams (OCPUF). These foams, commercially available in very large quantities and at low cost, present the same structural properties than ceramic or metallic foams, with the advantage to be easily engineered because of their lightweight and mechanical flexibility (elastomer). Recently, we have demonstrated that the whole surface of this polymeric structured material can be efficiently coated with polydopamine (PDA). This layer of PDA (OCPUF@PDA) allows the grafting of inorganic nanoparticles, as well as the covalent anchoring of organic compounds (Patent WO 2016 012689 A2). Moreover this coating process is industrially valuable because it operates at room temperature in water in the sole presence of dopamine and a buffer. These preliminary results constitute the basis of our project.
POLYCATPUF is a frontier research project that involves the close collaboration of three academic partners, mastered in surface science and materials, catalysis, and chemical engineering, and of an industrial partner. A consortium based on an experience of several years between the partners. The project aims to demonstrate all the potentialities offered by open cell polymeric foams as support for both homogeneous and heterogeneous catalysts. First of all, the covalent anchoring of homogeneous catalysts opens the door to a large variety of catalysts that were unconceivable with ceramic or metallic foams. The possibility to graft both single-site and multi-site catalysts allows conceiving processes of combined catalysis. Thanks to the presence of an industrial partner, the use of OCPUF as catalytic support will also be evaluated in an industrial reactor. Finally based on the elastic properties of OCPUF, innovative reactors will be envisioned.
The use of these OCPUF as catalytic supports may thus have a significant scientific, technologic, economic, and ecologic impact on the current industrial processes, from which might benefit the whole society.


Equipe : SNLEP
Date : 2016




ANR – DFG INFIDHEM (Feb. 2017 – Jan. 2020)

Title: Interconnected infinite-dimensional systems for heterogeneous media,
Coordinators : Birgit JACOB and Bernhard MASCHKE
French-german collaborative project

Partners :

  • FEMTO-ST/AS2M, UMR CNRS, Besançon (prof. Y. Le Gorrec)
  • LAGEP, UMR CNRS 5007 (prof. B. Maschke)
  • ISAE Institut Supérieur de l’Aéronautique et de l’Espace, Toulouse (prof. D. Matignon)
  • Un. De Kiel, chaire d’Automatique (prof. Th. Meurer)
  • Université Technique de Munich , chaire d’Automatique (prof. B. Lohman)
  • Université de Wuppertal, Groupe Analyse Fonctionnelle (prof. B. Jacob)
  • Topics:
    Mathematical Theory of Port Hamiltonian Systems and numerical methods
    Mass and heat transfer on k-complexes and model reduction
    Control of infinite-dimensional Port Hamiltonian Systems

    Applications: catalytic foams, active acoustical foams, thermo-elastic structure for aerospace, smart mechanical structures, musical acoustics ,

    Equipe : DYCOP
    Date : 2016




    ANR SEED PROSSIS2

    Acronym: PROSSIS2
    Type: ANR SEED
    Duration: 2012-16

    Staff at LAGEP: Emeline LEFEBVRE, Emilie GAGNIERE et Denis MANGIN
    External Partners: CIAT, CEA-LITEN, CNRS-IRCELYON, CNRS-LTN, Université de
    Savoie – LOCIE

    Title : Inter-seasonal Heat Storage Process Aim: This project is dedicated to an inter-seasonal heat storage process of solar energy. This thermochemical storage can be achieved using water
    vapor absorption by saline aqueous solution.
    Solar energy is captured in summer and used in winter for house heating of a typical house RT 2012 for 4 persons. Innovation of this project is the crystallization of the salt into the storage tank in order to increase the heat storage density.


    Equipe : PES
    Date : 2015




    EU project 655204: MARIE SKLODOWSKA-CURIE ACTIONS

    Paul Kotyczka, Ass. Professor at the Technical University of Munich (Germany) spends one year at DYCOP-LAGEP from Sept. 1., 2015 in the frame of MARIE SKLODOWSKA-CURIE ACTIONS Individual Fellowships (IF), EU project 655204- EasyEBC Easy-to-Implement Energy-Based Control Design for Systems of Conservation Laws.

    Summary:. The aim of EasyEBC is to develop easy-to-handle energy-based control design procedures for nonlinear systems of conservation laws in the port-Hamiltonian framework. Linear and nonlinear methods from mathematical control theory of finite- and infinite-dimensional systems will be applied for analysis and control synthesis, e.g. semi-group theory, discretization techniques, and energy shaping. The mathematics will be masked behind a user-friendly frontend that offers transparent tuning criteria for the closed-loop dynamics. Bridging the gap between mathematical complexity and easy applicability of the design tools is the main challenge of the project. As a long-term impact, EasyEBC will contribute to making nonlinear model-based control more accessible to engineers beyond academia.

    Equipe : DYCOP
    Date : 2015




    ModLife: european project

    Titre du projet: Advancing Modelling for Process-Product Innovation, Optimization, Monitoring Control in Life Science Industries

    Acronyme: ModLife

    Durée: 4 ans (2015-2020)

    Partenaires académiques :
    Danmarks Teknisk Universitet (DTU, coordinateur),
    Université Claude Bernard Lyon 1 (Nida Sheibat-Othman),
    University of Strathclyde, Imperial College of Science, Technology and Medicine,
    Rheinisch-Westfaelische Technische Hochschule RWTH Aachen

    Partenaires industriels: Bayer, alfa Laval, Unilever

    Projet européen : H2020-Marie Skłodowska-Curie actions-ITN-2015

    http://www.modlife.eu/


    Equipe : PES
    Date : 2015




    PeptiCaps: European project

    Durée: 3 ans

    Partenaires :
    - Fondation CIDETEC, Spain
    - Université de Bordeaux, France
    - Université Claude Bernard Lyon 1
    - University del País Vasco-Euskal Herriko, Spain
    - AHAVA –Dead Sea laboratories, Israël
    - Polypeptide Therapeutic Solutions, Spain
    - Angel Consulting, Italy
    - Instituto Di Richerche Farmacologiche Mario Negri, Italy
    - Spinverse Innovation Management Oy, Finland

    Projet européen : H2020-NMP-PILOTS-2015


    Equipe : Pharmaceutical Engineering
    Date : 2015




    SPCCT: Project H2020

    Projet H2020

    Titre : In Vivo Photon Counting CT Molecular Imaging in Cardio and Neuro-Vascular Diseases

    Acronyme : SPCCT

    Durée : 4 ans

    Appel d’offre : H2020 – SC1 – PHC-2015-11

    Equipe : Pharmaceutical Engineering
    Date : 2015




    LIGNAROCAT: Lignin to aromatics catalytic process


    Type : French National Research Agency (ANR)

    Aims : The main objective of this project is to develop a flexible process adapted to a wide range of lignins with selective catalysts in order to get mainly aromatics in the liquid effluents for a potential industrial valorization. In order to achieve this goal, the hydroconversion of, at least two different types of lignins, one from pulp industry, and one produced during cellulosic ethanol production, will be studied in addition to the wheat straw lignin used previously. The methodology planned for this project includes a study of the lignin solubility, a catalytic screening, the kinetic modeling of the hydroconversion and the evolution of the batch system into a semi-continuous reactor with further improvements, like for instance, solid injection, continuous gas phase and water removal.

    Abstract : Facing the need of energy independance and worldwide environmental concerns, lignocellulosic biomass was identified as one of most powerful carbon resource for biofuels and biochemicals. Lignin which one of the components of lignocellulosic biomass is few valorized at the moment. However lignin is already co-produced in pulp industry and it is the only recognized aromatics renewable source on the earth. In this project, we propose to develop selective lignin catalytic hydroconversion towards aromatic compounds, taking in account our experience in this area. A screening of well-chosen catalysts will be performed in a semi-opened batch reactor and then the technology will be transferred to a continuous process development via conversion kinetic modeling and thermodynamic parameters study.

    Duration : 4 ans
    Permanent Staff at LAGEP : E. GAGNIERE, D. EDOUARD, C. JALLUT, JP VALOUR
    Non Permanent Staff : Post-doct position (2 years)
    External Partners : IRCELyon /// TOTAL Research and Technology /// LGPM EA4038 (Ecole Centrale Paris-Paris Saclays University)

    Equipe : PES
    Date : 2014




    CRYSTALLIZE: From molecules to crystals: how do organic molecules form crystals?

    Type : Action COST

    Aim : The main objective of the Action is to unite researchers from different disciplines to develop a fundamental understanding of the molecular mechanisms involved in the nucleation and crystal growth process across the length scales from the molecular scale to the macroscopic scale, leading to the formation of materials with targeted functions and properties.

    Duration : 2014-18;
    Staff at LAGEP : Emilie GAGNIERE, Denis MANGIN;
    External Partners: 22 European countries
    Web site : http://www.cost.eu/COST_Actions/cmst/Actions/CM1402

    Equipe : PES
    Date : 2014




    PHORWater: Design of the phosphorus crystallization process

    Acronyme : ‘PHORWater’
    Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater

    Type : projet Européen Life+ (LIFE12 ENV/ES/000441) – With the contribution of the LIFE financial instrument of the European Union

    Aim : Improvement of phosphorus recovery at WWTP and worth of obtained struvite as fertilizer.

    Abstract : The work is to implement the pilot plant on the phosphorus recovery and the struvite production. The LAGEP is in charge of the reactor design and its start-up. The design of the crystallization reactor will be based on a series of pilot experiments based on real solutions, and modeling of the mixing of the hydrodynamics behavior.

    Duration : 2013-16

    Staff at LAGEP : Denis MANGIN, Claudia COGNE, Emilie GAGNIERE, Stéphane LABOURET (post-doc, CDD);

    Coordinator partner : DAM society « Depuración de Aguas del Mediterráneo » (Valencia, Spain);

    Other Partner : CALAGUA (Instituto de Ingeniería del Agua y Medio Ambiente de la Universidad Politécnica de Valencia, Departamento de Ingeniería Química de la Universidad de Valencia, Spain)

    Web site : http://phorwater.eu/fr/


    Equipe : PES
    Date : 2014




    Ardent

    Type : Carnot I@L

    Participants from LAGEP : N. Sheibat-Othman (coordinator), H. Fessi, G. Degobert

    Abstract : Synthesis and characterization of microspheres for tissue engineering of dental pulp.

    Partners : 

    • Mateis/INSA
    • Universidade de São Paulo
    • Faculté d’odontologie de Marseille
    • Rescoll


    Equipe : PES
    Date : 2013




    PickEP: Modeling of Pickering Emulsion Polymerization

    Type: ANR Jeunes Chercheurs
    Période : 2013-16
    Personnel LAGEP : N. Sheibat-Othman (coordinateur), Y. Chevalier
    Partenaires : LCPP C2P2 / Villeurbanne

    Abstract project PICKEP
    The aim of the present project is to develop a methodology for fundamental modeling of surfactant-free emulsion polymerization processes stabilized by inorganic particles, referred to as “Pickering emulsion polymerization (PickEP)”. The model should be able to describe the reaction kinetics in the different phases, mass transfer between phases (ex. radicals) and the evolution of the particle size distribution (PSD), which is an important end-use property of the latex. The sought model will be based on individual fundamental sub-models representing particle nucleation, growth, coagulation, mass transfer, partitioning of inorganic particles and the reaction kinetics in the different phases. Sub-models are autonomous pieces that are individually identified and validated experimentally representing an elementary mechanism. The obtained model will improve process understanding and can be used in control strategies in order to improve the product quality, mainly to increase the solid contents of the latex for industrial interest.

    Equipe : PES
    Date : 2013




    Scale-Up

    Type : ANR MATEPRO (2013-2017)

    Participants from LAGEP : N. Sheibat-Othman

    Abstract : Innovations in the design and scale-up of latex-based coatings technologies

    Partners : 

    • LCPP C2P2 / Villeurbanne (coordinator)
    • Arkema



    Equipe : PES
    Date : 2013




    Study and characterization of resistance and compressibility during a solid-liquid separation of a U/Ce slurry

    Research collaboration between CEA and LAGEPEP

    Participants from LAGEP: F. PUEL, D. COLSON

    Abstract : Confidential

    Partners 

    CEA (Marcoule)

    Equipe : PES
    Date : 2013




    Study and modelling of a continuous precipitation process in liquid-liquid extraction column

    Research collaboration between CEA and LAGEP

    Participants from LAGEP : F . PUEL, J.P. KLEIN

    Abstract : Confidential

    Partner

    CEA (Marcoule)


    Equipe : PES
    Date : 2013




    « Elimination des ions fluorures dans des eaux naturelles par de nouveaux procédés – Application au problème de la fluorose en Tunisie »

    Conception de formulations innovantes – Applications agroalimentaires

    Les procédés innovants – Procédés Menbranaires

    L’objectif de ce projet est d’évaluer plusieurs procédés pour la production d’eau potable à partir d’eaux naturelles Tunisiennes à concentrations élevées en ions fluorures. Dans de nombreux pays, comme la Tunisie, le Maroc, l’Algérie, et le Sénégal, la consommation en eau à forte teneur en ions fluorures Fconduit à des malformations et des pathologies graves (fluorose osseuse). Le premier procédé que nous avons étudié est l’adsorption des ions fluorures par de l’os de seiche, milieu poreux naturel disponible en Tunisie. Le deuxième procédé étudié est l’adsorption des ions fluorures par de la calcite en présence d’acide afin d’augmenter la quantité d’ions fluorure précipités. La nanofiltration et les résines échangeuses d’ions ont également été testées pour l’élimination des ions fluorures F- à partir de solutions modèles et d’eaux naturelles tunisiennes.

    Participants au projet pour le LAGEP

    • Encadrants : C. Charcosset – Pr. R. Ben Amar (Université de Sfax, Faculté des Sciences de Sfax (Tunisie)
    • Doctorants : Anis BEN NASR


    Date : 2013




    « Membranes chromatographiques pour la purification de biomolécules»



    Date : 2013




    « Préparation de nouvelles formes pharmaceutiques pour l’encapsulation de la vitamine E par contacteur à membrane »

    Conception de formulations innovantes – Applications agroalimentaires

    Les procédés innovants – Procédés Menbranaires

    L’objectif de ce travail est la préparation par émulsification membranaire de différentes formes colloïdales pour l’encapsulation de la vitamine E. La vitamine E joue principalement un rôle d’antioxydant dans les membranes biologiques. Dans notre étude, la vitamine E est destinée à une injection par voie pulmonaire pour prévenir le cancer du poumon chez les fumeurs. La thèse porte sur la préparation de différentes formes colloïdales pour l’encapsulation de la vitamine E : nanoémulsions, liposomes et micelles. Différentes techniques membranaire sont mises en œuvre: membrane tubulaire avec écoulement tangentiel, membrane plane avec agitation à la surface de la membrane, et lit de particules pour des solutions de viscosité élevée. Ce projet est réalisé en collaboration avec l’Université de Loughborough (Grande Bretagne) et Université de Wageningen (Pays-Bas).

    Participants au projet pour le LAGEP

    • Encadrants :Catherine. Charcosset – H. Fessi
    • Doctorant : Abdallah LAOUINI


    Date : 2013




    « Préparation et caractérisation des vésicules lipidiques encapsulant des huiles essentielles»

    Conception de formulations innovantes – Applications agroalimentaires

    Les procédés innovants – Procédés Menbranaires

    L’objectif de ce projet est l’encapsulation d’huiles essentielles dans des liposomes. Les points suivants sont abordés : (1) comparaison de différentes techniques (hydration du film, injection d’éthanol, contacteur à membrane, extrusion à travers des membranes, etc) pour la préparation de liposomes à petite et grande échelle, (2) application de ces liposomes au domaine de la cosmétique et de la parfumerie.

    Participants au projet pour le LAGEP

    • Encadrants : Catherine Charcosset – Pr H. Greige (Université libanaise) Co-tutelle avec le Professeur H. Greige, Département de Chimie et de Biochimie, Fanar, Université Libanaise, Liban
    • Doctorant : Carine SEEBALY


    Date : 2013




    « Principes actifs de type triterpenoïde issus de la plante Ecballium elaterium : mesure des propriétés de transport membranaire»

    Conception de formulations innovantes – Applications agroalimentaires

    Les procédés innovants – Procédés Menbranaires

    La plante médicinale Ecballium elaterium, riche en cucurbitacines et en dérivés de l’acide oléanolique, est courante dans la région du Moyen-Orient. La caractérisation de ses propriétés pharmacocinétiques et pharmacodynamiques de ses constituants terpéniques permettrait d’expliquer certains des effets bénéfiques et/ou toxiques de cette plante. L’objectif de la Thèse est la détermination de l’influence de ces principes actifs sur les propriétés de transport de la bicouche lipidique de liposomes, utilisée comme modèle d’une membrane biologique. Plusieurs techniques sont mises en œuvre : (1) l’encapsulation d’une molécule fluorescente (sulforhodamine) dans les liposomes et la mesure de la fluorescence au cours du temps ; (2) la calorimétrie différentielle à balayage (DSC); (3) la microscopie électronique à transmission (TEM); (4) la microscopie à force atomique (AFM) pour déterminer l’influence du principe actif sur la rigidité des bicouches lipidiques ; (5) la mesure de la taille des liposomes par DLS.

    Participants au projet pour le LAGEP

    • Encadrants : Catherine Charcosset – Pr H. Greige (Université libanaise) Co-tutelle avec le Professeur H. Greige, Département de Chimie et de Biochimie, Fanar, Université Libanaise, Liban
    • Doctorant : Lamice HABIB


    Date : 2013