TOUTES

2013

2014

2015

2016

22 documents



ANR « Design de nanoparticules efficaces pour une nouvelle approche du traitement des contaminations par les neurotoxiques »

ANR ASTRID

Partenaires

  • LAGEP : Porteur M.A. Bolzinger – S. Briançon – I. Pitault.
  • Laboratoire de Chimie ENS –UMR CNRS 5182 : Dr F. Chaput
  • Institut Lumière Matière (ILM) – UMR CNRS 5306 : Dr D. Amans
  • MATEIS UMR CNRS 5510: Pr. Masenelli-Varlot

Résumé
Les attaques successives avec des agents NRBC dans un contexte civil et militaire ont rendu nécessaire la mise au point de contre-mesures efficaces. Ainsi, parmi les agents NRBC, les agents neurotoxiques organophosphorés (OPs, ex VX) sont des composés très toxiques, également utilisés en agriculture comme agents insecticides et défoliants. Les agents organochlorés (OCs, ex ypérite) sont des agents toxiques persistants qui provoquent des brûlures, des vésications et des nécroses lorsqu’ils sont au contact de la peau, ainsi qu’une toxicité générale. Deux approches sont couramment utilisées pour limiter les conséquences de contaminations externes ou internes : la décontamination de la peau et des phanères et l’administration de traitements systémiques. Dans le cadre de la décontamination externe les moyens de décontamination restent souvent non spécifiques et reposent sur une approche empirique. Certains sont très coûteux pour une utilisation massive. La norme AFNOR qui définit les conditions expérimentales des essais quantitatifs permettant d’évaluer et de comparer l’efficacité de dispositifs de décontamination sur une peau saine ne sera publiée qu’en 2016. La longue genèse de cette norme, montre que malgré le long historique d’usage de ces agents toxiques, et l’usage de solutions de lavage ou d’élimination des toxiques, les avancées significatives sur les aspects de pharmacocinétique cutanée ne sont que très récents. On peut l’expliquer par la complexité à réaliser des expériences avec ces agents toxiques, au regard des normes de sécurité. Un système polyvalent, efficace sur plusieurs familles de toxiques, peu coûteux et facile d’utilisation, permettant d’éviter toute dissémination, n’est actuellement pas disponible sur le marché. Dans cette logique, il s’avère que les oxydes métalliques sous la forme de poudres sont des systèmes particulièrement prometteurs, car permettant de combiner les actions d’absorption et de dégradation des toxiques. Ce projet propose une étude approfondie des mécanismes de dégradation des agents chimiques organophosphorés, ainsi que des organochlorés, par des nanoparticules d’oxydes métalliques. Le projet s’articule selon trois objectifs principaux : (i) fort de premiers résultats qualitatifs obtenus avec des nanoparticules d’oxydes de cérium, utiliser ces dernières comme matériau modèle pour identifier les mécanismes de dégradation des toxiques, (ii) proposer des matériaux alternatifs sur la base de ces mécanismes, (iii) aboutir à une formulation permettant des évaluations in vitro sur des échantillons de peau animale et humaine en laboratoire.
Les nanomatériaux seront produits par différentes méthodes, soit chimique (Synthèses Solvothermales), soit physique (ablation laser en liquides). Les particules formées seront caractérisées pour obtenir l’ensemble des paramètres physicochimiques d’intérêt. L’objectif est de corréler la synthèse, c’est à dire le choix de la méthode de synthèse et des post-traitements (recuits en atmosphère contrôlée), aux caractéristiques structurales et physico-chimiques des nanoparticules produites. L’évolution des efficacités de décontamination en fonctions de ces caractéristiques permettra alors d’identifier les mécanismes de dégradation des toxiques, avec deux conséquences : (i) une optimisation du mode de production aboutissant à une efficacité accrue, et (ii) la proposition de nouveaux matériaux. Pour identifier les mécanismes de dégradation, le choix des similis (du VX par exemple) constituera une étape clé. L’influence du milieu (liquide ou sec), des solvants, des paramètres tels que le pH seront étudiés.

Equipe : Génie Pharmacotechnique
Date : 2016




ANR  » Contacteur membranaire innovant pour la cristallisation : Application aux systèmes de type diffusion/réaction « 

ANR ICARE

Partenaire
LAGEP

Résumé
La cristallisation/précipitation est l’une des opérations majeures des procédés chimiques industriels pour produire, purifier ou séparer les composés solides ou les produits. Jusqu’à présent, le réacteur agité est le procédé de référence pour les applications industrielles mais il y a une forte demande pour le développement de technologies de rupture, mis en évidence par de nombreux auteurs et rapports. Ainsi, les procédés membranaires sont considérés comme l’une des technologies les plus prometteuses parce qu’ils peuvent éventuellement permettre de développer un procédé intensifié, continu, facile à extrapoler avec un contrôle local fin de l’hydrodynamique et du transfert de matière/chaleur. Plusieurs tentatives de développement de nouveaux procédés de cristallisation basés sur l’utilisation de membranes microporeuses ont montrés des limites importantes à cause du colmatage des pores et de la surface de la membrane par des cristaux, ce qui induit une diminution des performances rendant ainsi cette stratégie de cristallisation largement hypothétique.
Le colmatage de la membrane et le blocage des pores pourraient éventuellement être évitées par l’utilisation de matériaux denses (c’est-à-dire non poreux) et des modules de fibres creuses, tout en gardant un procédé continu, facile à extrapoler, intensifié, ainsi que le contrôle local qui sont des avantages clés des procédés membranaires. Cette stratégie reste toutefois inexplorée jusqu’à présent et aborde un enjeu scientifique majeur : prévoir les mécanismes de cristallisation et sa localisation dans/sur un matériau polymère dense fonctionnant en continu.
ICARE se propose de relever ce défi scientifique grâce à un ensemble de 3 modules de travails combinant des études et des techniques d’imagerie sur différents systèmes de cristallisation utilisant des membranes denses, le transfert de matière, des expériences de cristallisation en cellule batch (WP1), la modélisation et la simulation du procédé de cristallisation (WP2), ainsi que la preuve de la faisabilité technologique à l’échelle laboratoire sur des modules fibres creuses du matériau dense le plus prometteur (WP3). Le carbonate de baryum est sélectionné comme composé modèle afin d’évaluer précisément la possibilité de prédire la cristallisation en fonction des propriétés de transfert de matières du polymère dense, la concentration des réactifs et les conditions opératoires. Plus particulièrement, une comparaison des mécanismes de la cristallisation entre une alimentation en CO2 gazeux ou dissous à travers un film polymère dense sera effectuée afin de tester la robustesse de l’approche numérique développée et de la simulation (WP2). Une sous-tâche (WP2.2), réalisée grâce à une collaboration internationale, sera consacrée à la modélisation moléculaire des phénomènes de cristallisation dans/sur un polymère dense. Une comparaison entre les performances prédites (WP2.2) et l’approche pour le milieu continu (WP2.1) sera réalisée.
ICARE a pour but d’effectuer une étude exploratoire des systèmes diffusifs/réactifs dans des polymères denses, incluant la cristallisation. L’objectif ultime est de développer, en 4 ans, une connaissance fondamentale de base sur les processus de cristallisation dans/sur le polymère dense, grâce à une approche pluridisciplinaire (génie chimique, science des matériaux, modélisation moléculaire), expérimentale et numérique. Les principaux résultats sont attendus en termes de développements scientifiques et de procédés industriels de cristallisation. En outre, la possibilité de sélectionner le système et les conditions opératoires, menant à une cristallisation sur la surface de la membrane ou intra-membranaire, offre des potentialités en science des matériaux (production de matériaux hybrides grâce à la cristallisation in situ), procédés de séparation (colmatage des membranes d’osmose inverse ou des résines échangeuses d’ions) ou dans l’industrie pharmaceutique (production de systèmes de libération contrôlée).

Equipe : PES
Date : 2016




ANR « Polydopamine-coated open cell polyurethane foams: polyvalent supports for single and multi-site heterogeneous catalyst »

POLYCATPUF

Organization (Partner)
ICS UPR 22 (Partner 1) JIERRY Loïc Assistant-Professor Coordination surface treatment of the OCPUF
LCM UMR 7509 (Partner 2) RITLENG Vincent Assistant-Professor Catalysis
LAGEP UMR 5007 (Partner 3) EDOUARD David Assistant-Professor Chemical engineering
Adisseo CINACHEM (Partner 4) RICAUD Lionel Engineer

Résumé
L’utilisation de procédés industriels basés sur des Supports Catalytiques Structurés (SCS) est largement répandue. En effet, ces supports permettent un important rapport surface/volume, une faible perte de charge, des transferts de masse efficaces, un mélange intime des réactifs et une séparation aisée du catalyseur des produits. Parmi les SCS, les mousses à cellules ouvertes sont des candidats de choix car elles remplissent toutes ces caractéristiques. De structure métallique ou céramique, ce sont des supports idéaux de particules métalliques jouant le rôle de catalyseurs. La préparation de ces mousses nécessite cependant plusieurs étapes et la physisorption des particules catalytiques requiert un chauffage à très haute température. Ce mode de préparation, coûteux et vorace en énergie, représente un inconvénient important pour le développement de tels catalyseurs eu égard aux contraintes économiques et écologiques actuelles. En outre, ces mousses présentent des inconvénients liés à leur structure : elles sont lourdes et non flexibles, ce qui les rend cassantes ; elles présentent de nombreuses cellules fermées qui rendent la reproductibilité parfois aléatoire ; la récupération de l’onéreuse phase catalytique nécessite souvent de nombreux traitements chimiques en milieux fortement corrosifs. Par ailleurs, l’industrie chimique tend actuellement à adapter ses procédés de production en fonction de contraintes écologiques et économiques fortes, ce qui se traduit par la recherche de procédés et catalyseurs plus efficaces, l’utilisation de solvants moins toxiques (eau ou mélange organique/eau), et de températures de réaction les plus basses possibles.
Avec POLYCATPUF, nous proposons une alternative basée sur l’utilisation de mousses à cellules ouvertes en polyuréthane (OCPUF) pour des procédés s’opérant en conditions douces. Ces mousses, commercialement disponibles en très large quantité et à faible coût, possèdent les mêmes propriétés structurales que les mousses inorganiques avec l’avantage d’être flexibles et élastiques. Récemment, nous avons découvert qu’elles pouvaient être entièrement recouvertes d’un film de polydopamine (PDA). Ce revêtement déposé dans l’eau à température ambiance est particulièrement robuste et permet le greffage covalent de molécules organiques ainsi que l’ancrage de nanoparticules possédant des propriétés catalytiques. Nous avons récemment protégé cette découverte (brevet WO 2016 012689 A2) et ces résultats préliminaires constituent la base de ce projet.
POLYCATPUF est à l’interface de plusieurs disciplines, impliquant une étroite collaboration multidisciplinaire entre trois partenaires académiques spécialisés dans les domaines des matériaux et de la science des surfaces, de la catalyse organométallique et du génie chimique, et un partenaire industriel. Un consortium basé sur une expérience de quelques années entre les partenaires. Ce projet a pour but de démontrer toutes les potentialités offertes par des mousses polymères comme support de catalyseurs homogènes et hétérogènes. Tout d’abord, le greffage covalent de catalyseurs homogènes ouvre la porte à une vaste palette de catalyses accessibles, jusqu’alors inenvisageables à partir de mousses céramiques ou métalliques. Le greffage possible de catalyseurs homogènes et hétérogènes en surface permet de concevoir des procédés de catalyse combinée. Grâce à la présence d’un partenaire industriel, l’utilisation d’OCPUF comme support catalytique sera également évaluée dans un réacteur industriel. Enfin, ces OCPUF sont souples et élastiques, des propriétés qui laissent entrevoir la conception possible de réacteurs originaux tels qu’envisagés dans notre projet.
L’utilisation de ces OCPUF comme supports catalytiques pourrait donc avoir un impact scientifique et technologique mais aussi économique et écologique significatif sur les procédés industriels actuels dont pourrait bénéficier la société dans son ensemble.

Equipe : SNLEP
Date : 2016




ANR – DFG INFIDHEM (Fév. 2017 – Jan. 2020)

Titre: Systèmes interconnectés de dimension infinie pour les milieux hétérogènes
Coordinateurs : Birgit JACOB et Bernhard MASCHKE
Projet PRCI franco-allemand

Partenaires :

  • FEMTO-ST/AS2M, UMR CNRS, Besançon (prof. Y. Le Gorrec)
  • LAGEP, UMR CNRS 5007 (prof. B. Maschke)
  • ISAE Institut Supérieur de l’Aéronautique et de l’Espace, Toulouse (prof. D. Matignon)
  • Un. De Kiel, chaire d’Automatique (prof. Th. Meurer)
  • Université Technique de Munich , chaire d’Automatique (prof. B. Lohman)
  • Université de Wuppertal, Groupe Analyse Fonctionnelle (prof. B. Jacob)
  • Thèmes:
    Théorie mathématique des systèmes hamiltoniens à port et méthodes numériques
    Transport de matière et chaleur sur des k-complexes et réduction d’ordre
    Commande des systèmes hamiltoniens à port de dimension infinie

    Applications: mousses catalytiques, mousses acoustiques actives, structures aérospatiales thermo-élastiques, acoustique musicale, structures mécaniques intelligentes,

    Equipe : DYCOP
    Date : 2016




    ANR SEED PROSSIS2

    Acronyme : PROSSIS2
    Type : ANR SEED
    Titre : PROcédé de Stockage Solaire Inter-Saisonnier
    Période : 2012-16

    Personnel LAGEP: Emeline LEFEBVRE, Emilie GAGNIERE et Denis MANGIN
    Partenaires : CIAT, CEA-LITEN, CNRS-IRCELYON, CNRS-LTN, Université de
    Savoie – LOCIE

    Objectif : L’objectif de ce projet est le stockage inter-saisonnier de l’énergie solaire par voie thermochimique au moyen d’une solution saline. L’énergie solaire est captée en été lorsque l’exposition est maximale.
    L’énergie est ensuite stockée puis utilisée, en hiver, pour le chauffage d’une habitation de type RT 2012 de 120 m² pour 4 personnes. L’innovation de ce projet réside en la cristallisation du sel dans la cuve de stockage pour une augmentation de la densité de stockage de chaleur.


    Equipe : PES
    Date : 2015




    EU project 655204: MARIE SKLODOWSKA-CURIE ACTIONS

    Paul Kotyczka, Ass. Professor at the Technical University of Munich (Germany) spends one year at DYCOP-LAGEP from Sept. 1., 2015 in the frame of MARIE SKLODOWSKA-CURIE ACTIONS Individual Fellowships (IF), EU project 655204- EasyEBC Easy-to-Implement Energy-Based Control Design for Systems of Conservation Laws.

    Summary:. The aim of EasyEBC is to develop easy-to-handle energy-based control design procedures for nonlinear systems of conservation laws in the port-Hamiltonian framework. Linear and nonlinear methods from mathematical control theory of finite- and infinite-dimensional systems will be applied for analysis and control synthesis, e.g. semi-group theory, discretization techniques, and energy shaping. The mathematics will be masked behind a user-friendly frontend that offers transparent tuning criteria for the closed-loop dynamics. Bridging the gap between mathematical complexity and easy applicability of the design tools is the main challenge of the project. As a long-term impact, EasyEBC will contribute to making nonlinear model-based control more accessible to engineers beyond academia.

    Equipe : DYCOP
    Date : 2015




    ModLife : projet européen

    Titre du projet: Advancing Modelling for Process-Product Innovation, Optimization, Monitoring Control in Life Science Industries

    Acronyme: ModLife

    Durée: 4 ans (2015-2020)

    Partenaires académiques :

      Danmarks Teknisk Universitet (DTU, coordinateur),
      Université Claude Bernard Lyon 1 (Nida Sheibat-Othman),
      University of Strathclyde, Imperial College of Science, Technology and Medicine,

      Rheinisch-Westfaelische Technische Hochschule RWTH Aachen

      Partenaires industriels: Bayer, alfa Laval, Unilever

      Projet européen : H2020-Marie Skłodowska-Curie actions-ITN-2015

      http://www.modlife.eu/


      Equipe : PES
      Date : 2015




    PeptiCaps : projet européen

    Durée: 3 ans

    Partenaires :
    - Fondation CIDETEC, Spain
    - Université de Bordeaux, France
    - Université Claude Bernard Lyon 1
    - University del País Vasco-Euskal Herriko, Spain
    - AHAVA –Dead Sea laboratories, Israël
    - Polypeptide Therapeutic Solutions, Spain
    - Angel Consulting, Italy
    - Instituto Di Richerche Farmacologiche Mario Negri, Italy
    - Spinverse Innovation Management Oy, Finland

    Projet européen : H2020-NMP-PILOTS-2015

    Equipe : Génie Pharmacotechnique
    Date : 2015




    SPCCT : Projet H2020

    Projet H2020

    Titre : In Vivo Photon Counting CT Molecular Imaging in Cardio and Neuro-Vascular Diseases

    Acronyme : SPCCT

    Durée : 4 ans

    Appel d’offre : H2020 – SC1 – PHC-2015-11

    Equipe : Génie Pharmacotechnique
    Date : 2015




    LIGNAROCAT : Procédé de conversion catalytique de la lignine vers les aromatiques

    Type : ANR – Appel à projet générique AAP-Energie

    Objectif : L’objectif du projet LIGNAROCAT est de développer un procédé de conversion de lignine en molécules Benzène, Toluène, Xylène (BTX) qui sont des molécules plateformes de la chimie. La tâche du LAGEP est de déterminer expérimentalement la solubilité de différentes lignines, à froid et à chaud, assortie d’une modélisation cinétique de sa dissolution. Une modélisation cinétique de la dissolution et de la réaction sera ensuite réalisée.

    Résumé (open) : Face au besoin d’indépendance énergétique et aux préoccupations environnementales, la biomasse lignocellulosique, a été identifiée comme une ressource renouvelable carbonée ayant un fort potentiel pour le développement de biocarburants et de composés chimiques bio-sourcés. La lignine qui est une des composantes majeures de cette biomasse est peu valorisée actuellement. Elle est pourtant co-produite lors de l’utilisation industrielle de la cellulose, et est la seule ressource renouvelable connue de composés aromatiques. Nous proposons dans ce projet de développer l’hydroconversion catalytique de lignine vers la formation sélective de composés aromatiques pour l’industrie sur la base de connaissances déjà acquises. Un criblage de catalyseurs appropriés sera réalisé en réacteur batch semi-ouvert et la technologie sera transférée vers le développement d’un procédé en continu, via une modélisation cinétique de la conversion et l’étude des paramètres thermodynamiques.

    Durée : 4 ans
    Personnel permanent LAGEP : E. GAGNIERE, D. EDOUARD, C. JALLUT, JP VALOUR
    Personnel non permanent (ou à recruter) : Post-doctorant (2 ans)
    Partenaires Externes : IRCELyon /// TOTAL Research and Technology /// LGPM EA4038 (Ecole Centrale Paris – Université Paris Saclay)

    Equipe : PES
    Date : 2014




    CRYSTALLIZE : Des molécules aux cristaux: comment les molécules organiques forment des cristaux ?

    Type : Action COST

    Objectif : L’objectif principal de cette action est de réunir des chercheurs de différentes disciplines afin de comprendre les mécanismes moléculaires impliqués dans les processus de nucléation et de croissance cristalline, de l’échelle moléculaire à l’échelle macroscopique.

    Période : 2014-18;
    Personnel LAGEP :Emilie GAGNIERE, Denis MANGIN;
    Partenaires : 22 pays européens
    Site internet : http://www.cost.eu/COST_Actions/cmst/Actions/CM1402

    Equipe : PES
    Date : 2014




    PHORWater : Conception d’un réacteur de précipitation des phosphates

    Acronyme : ‘PHORWater’
    Integral Management Model for Phosphorus recovery and reuse from Urban Wastewater

    Type : projet Européen Life+ (LIFE12 ENV/ES/000441) – With the contribution of the LIFE financial instrument of the European Union

    Objectif :Amélioration de la récupération du phosphore dans les STEPs et valorisation de la struvite formée sous forme d’engrais
    Résumé : Le travail consiste à implanter une unité pilote de récupération du phosphore et de production de struvite. Le LAGEP a en charge la conception et le démarrage du réacteur. Le dimensionnement de ce réacteur est basé sur une étude expérimentale en pilote, réalisée avec les solutions réelles, et sur une modélisation de son comportement hydrodynamique.

    Période : 2013-16 ;
    Personnel LAGEP : Denis MANGIN, Claudia COGNE, Emilie GAGNIERE, Stéphane LABOURET (post-doc, CDD);
    Coordinateur du projet : société DAM « Depuración de Aguas del Mediterráneo » (Valence, Espagne)
    Autre Partenaire : groupe de recherche CALAGUA (Instituto de Ingeniería del Agua y Medio Ambiente de la Universidad Politécnica de Valencia, Departamento de Ingeniería Química de la Universidad de Valencia, Espagne),

    Site web : http://phorwater.eu/fr/



    Equipe : PES
    Date : 2014




    Ardent

    Type : Carnot I@L

    Participants au projet pour le LAGEP : N. Sheibat-Othman (coordinateur), H. Fessi, G. Degobert

    Résumé : Synthèse et caractérisation de microsphères pharmaceutiques pour la régénération des tissus dentaires

    Partenaires

    • Mateis/INSA
    • Universidade de São Paulo
    • Faculté d’odontologie de Marseille
    • Rescoll


    Equipe : PES
    Date : 2013




    PickEP : Modeling of Pickering Emulsion Polymerization


    Type: ANR Jeunes Chercheurs
    Période : 2013-16
    Personnel LAGEP : N. Sheibat-Othman (coordinateur), Y. Chevalier
    Partenaires : LCPP C2P2 / Villeurbanne

    Résumé projet PICKEP
    L’objectif du présent projet est de développer une méthodologie pour la modélisation fondamentale des procédés de polymérisation en émulsion sans tensioactif stabilisée par des particules inorganique «la polymérisation en émulsion Pickering (PickEP) ». Le modèle devrait décrire la cinétique de réaction dans les différentes phases, le transfert de masse (ex. radicaux) ainsi que l’évolution de la distribution de taille des particules (PSD), qui représente une propriété importante du latex. Le modèle recherché sera basé sur des sous-modèles individuels fondamentaux représentant la nucléation des particules, la croissance, la coagulation, la cinétique, etc. Ces sous-modèles sont des parties autonomes qui sont individuellement identifiés et validés expérimentalement et qui représentent un mécanisme élémentaire. Le modèle obtenu permettra d’améliorer la compréhension de procédés et de développer une stratégie de commande afin d’améliorer la qualité du produit, principalement d’augmenter le taux de solides du latex, qui représente un grand intérêt industriel.

    Equipe : PES
    Date : 2013




    Scale-Up

    Type : ANR MATEPRO (2013-2017))

    Participant au projet pour le LAGEP : N. Sheibat-Othman

    Résumé : Innovations in the design and scale-up of latex-based coatings technologies

    Partenaires

    • LCPP C2P2 / Villeurbanne (coordinateur)
    • Arkema


    Equipe : PES
    Date : 2013




    Étude et caractérisation des phénomènes de résistance à l’écoulement et de compressibilité lors de séparation solide – liquide d’une suspension d’oxalate d’U/Ce

    Collaboration CEA-LAGEP

    Participants au projet pour le LAGEP : F. PUEL, D. COLSON

    Résumé : Confidentiel

    Partenaire

    CEA site de Marcoule



    Equipe : PES
    Date : 2013




    Etude et modélisation d’un procédé continu de précipitation en colonne d’extraction liquide-liquide

    Collaboration CEA-LAGEP

    Participants au projet pour le LAGEP : F . PUEL, J.P. KLEIN

    Résumé
     : Confidentiel

    Partenaire

    CEA site de Marcoule

    Equipe : PES
    Date : 2013




    « Elimination des ions fluorures dans des eaux naturelles par de nouveaux procédés – Application au problème de la fluorose en Tunisie »

    Conception de formulations innovantes – Applications agroalimentaires

    Les procédés innovants – Procédés Menbranaires

    L’objectif de ce projet est d’évaluer plusieurs procédés pour la production d’eau potable à partir d’eaux naturelles Tunisiennes à concentrations élevées en ions fluorures. Dans de nombreux pays, comme la Tunisie, le Maroc, l’Algérie, et le Sénégal, la consommation en eau à forte teneur en ions fluorures F- conduit à des malformations et des pathologies graves (fluorose osseuse). Le premier procédé que nous avons étudié est l’adsorption des ions fluorures par de l’os de seiche, milieu poreux naturel disponible en Tunisie. Le deuxième procédé étudié est l’adsorption des ions fluorures par de la calcite en présence d’acide afin d’augmenter la quantité d’ions fluorure précipités. La nanofiltration et les résines échangeuses d’ions ont également été testées pour l’élimination des ions fluorures F- à partir de solutions modèles et d’eaux naturelles tunisiennes.

    Participants au projet pour le LAGEP

    • Encadrants : C. Charcosset – Pr. R. Ben Amar (Université de Sfax, Faculté des Sciences de Sfax (Tunisie)
    • Doctorants : Anis BEN NASR


    Date : 2013




    « Membranes chromatographiques pour la purification de biomolécules»

    Conception de formulations innovantes – Applications agroalimentaires

    Les procédés innovants – Procédés membranaires

    L’objectif de ce projet est la prédiction des performances de différents supports de chromatographie sur membrane par simulation numérique et validation expérimentale. En chromatographie, les membranes microporeuses offrent l’avantage principal par rapport aux gels de diminuer les phénomènes de diffusion et donc de permettre de purifier rapidement des quantités importantes de molécules. Ce travail de Thèse est réalisé en collaboration avec la société Sartorius. Les systèmes considérés sont la chromatographie échangeuse d’ions et la chromatographie d’affinité. Une attention particulière est portée à la géométrie des membranes et des modules.

    • Encadrants : Catherine Charcosset – Koffi Fiaty
    • Doctorant : Chalore TEEPAKORN


    Date : 2013




    « Préparation de nouvelles formes pharmaceutiques pour l’encapsulation de la vitamine E par contacteur à membrane »

    Conception de formulations innovantes – Applications agroalimentaires

    Les procédés innovants – Procédés Menbranaires

    L’objectif de ce travail est la préparation par émulsification membranaire de différentes formes colloïdales pour l’encapsulation de la vitamine E. La vitamine E joue principalement un rôle d’antioxydant dans les membranes biologiques. Dans notre étude, la vitamine E est destinée à une injection par voie pulmonaire pour prévenir le cancer du poumon chez les fumeurs. La thèse porte sur la préparation de différentes formes colloïdales pour l’encapsulation de la vitamine E : nanoémulsions, liposomes et micelles. Différentes techniques membranaire sont mises en œuvre: membrane tubulaire avec écoulement tangentiel, membrane plane avec agitation à la surface de la membrane, et lit de particules pour des solutions de viscosité élevée. Ce projet est réalisé en collaboration avec l’Université de Loughborough (Grande Bretagne) et Université de Wageningen (Pays-Bas).

    Participants au projet pour le LAGEP

    • Encadrants :Catherine. Charcosset – H. Fessi
    • Doctorant : Abdallah LAOUINI


    Date : 2013




    « Préparation et caractérisation des vésicules lipidiques encapsulant des huiles essentielles»

    Conception de formulations innovantes – Applications agroalimentaires

    Les procédés innovants – Procédés Menbranaires

    L’objectif de ce projet est l’encapsulation d’huiles essentielles dans des liposomes. Les points suivants sont abordés : (1) comparaison de différentes techniques (hydration du film, injection d’éthanol, contacteur à membrane, extrusion à travers des membranes, etc) pour la préparation de liposomes à petite et grande échelle, (2) application de ces liposomes au domaine de la cosmétique et de la parfumerie.

    Participants au projet pour le LAGEP

    • Encadrants : Catherine Charcosset – Pr H. Greige (Université libanaise) Co-tutelle avec le Professeur H. Greige, Département de Chimie et de Biochimie, Fanar, Université Libanaise, Liban
    • Doctorant : Carine SEEBALY


    Date : 2013




    « Principes actifs de type triterpenoïde issus de la plante Ecballium elaterium : mesure des propriétés de transport membranaire»

    Conception de formulations innovantes – Applications agroalimentaires

    Les procédés innovants – Procédés Menbranaires

    La plante médicinale Ecballium elaterium, riche en cucurbitacines et en dérivés de l’acide oléanolique, est courante dans la région du Moyen-Orient. La caractérisation de ses propriétés pharmacocinétiques et pharmacodynamiques de ses constituants terpéniques permettrait d’expliquer certains des effets bénéfiques et/ou toxiques de cette plante. L’objectif de la Thèse est la détermination de l’influence de ces principes actifs sur les propriétés de transport de la bicouche lipidique de liposomes, utilisée comme modèle d’une membrane biologique. Plusieurs techniques sont mises en œuvre : (1) l’encapsulation d’une molécule fluorescente (sulforhodamine) dans les liposomes et la mesure de la fluorescence au cours du temps ; (2) la calorimétrie différentielle à balayage (DSC); (3) la microscopie électronique à transmission (TEM); (4) la microscopie à force atomique (AFM) pour déterminer l’influence du principe actif sur la rigidité des bicouches lipidiques ; (5) la mesure de la taille des liposomes par DLS.

    Participants au projet pour le LAGEP

    • Encadrants : Catherine Charcosset – Pr H. Greige (Université libanaise) Co-tutelle avec le Professeur H. Greige, Département de Chimie et de Biochimie, Fanar, Université Libanaise, Liban
    • Doctorant : Lamice HABIB


    Date : 2013